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COMMENT 

Note on Backlund transformations 

R Martini 
Department of Applied Mathematics, Twente University of Technology, PO Box 217, 7500 
AE Enschede. The Netherlands 

Received 19 May 1986 

Abstract. The method of obtaining Backlund transformations proposed by Chern and 
Tenenblat fits completely the approach of obtaining Backlund transformations by prolonga- 
tion techniques. For Kdv,  M K d V  and sine-Gordon equations the only difference consists 
in the application of a non-linear representation of the prolongation algebra other than 
the usual one. This representation can be obtained by a coordinate transformation of the 
prolongation variable. 

In the literature there are a number of methods available for obtaining Backlund 
transformations for integrable systems or  integrable evolution equations. 

An intriguing, and in our opinion, very important aspect of these techniques is the 
study and understanding of their connection and common background with the aim 
of achieving some unification of these methods. It is the purpose of this comment to 
contribute to this understanding. 

In a recent paper [ l ]  Chern and Tenenblat investigate properties of evolution 
equations in terms of pseudospherical surfaces. Moreover they discuss a geometrical 
result which, under certain conditions, provides Backlund transformations for diff eren- 
tial equations which describe pseudospherical surfaces. The relation between non- 
linear partial differential equations and geometric properties of surfaces dates back to 
the nineteenth century and  was initiated by Bianchi, Backlund and Darboux. They 
have shown that, for example, the sine-Gordon equation can be interpreted in terms 
of transformations of pseudospherical surfaces. Later this result was considerably 
extended by, for example, Sasaki [ 2 ] .  

Wahlquist and Estabrook [3 ,4]  study evolution equations in connection with 
prolongation structures and  furnish a way to obtain Backlund transformations from 
this prolongation structure. We remark that in [ 11 by definition a non-linear differential 
equation describes a pseudospherical surface precisely when the equation admits a 
sI(2) prolongation structure. From this observation it follows that the method of 
obtaining Backlund transformations proposed by Chern and  Tenenblat fits completely 
within the prolongation approach. We shall show that both the results and the 
derivation of these results for the three concrete cases, the K d v ,  M K d v  and  sine-Gordon 
equations, are closely related to well known derivations and results which are already 
available in the literature. In fact we shall see that for these three examples, apart 
from a very elegant geometrical interpretation, the only difference consists of applica- 
tion of another non-linear representation of the prolongation algebra than the usual 
one. This representation can be obtained by a coordinate transformation of the 
prolongation variable. 
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The sl(2)-valued prolongation form for the KdV equation is given, see e.g. [3,5] by 

w = F d x + G  d t  (1) 

with 

F = -e + (224 - A )f 

G = 4( U + A)e+2(  -ur, -4u2+2A’ - 2uA)f+2u,h 
(2) 

where e, f, h is the usual basis of sI(2) such that 

[ h ,  e ] = 2 e  [ h , f l =  -2f [ e , f  1 = h 
where A is a parameter. Equating to zero the curvature dw --o A w equals the K d v  

equation 

U, + U,,, + 12uu, = 0. 

w = w , x ,  + W z X 2  + w , x 3  

( 3 )  

(4) 

The corresponding 1-form for this equation considered by Chern and  Tenenblat is 

where 

w 1  = ( 1  - 2 ~ )  d x +  ( 2 ~ , ,  - 2 7 ~ ~  $277’~  + 8 ~ ’ -  7 l - 4 ~ )  d t  

W , = V  d ~ + ( - 7 ’ - 4 ~ ~ + 4 ~ , )  d t  ( 5 )  

w 3  = -( 1 + 2 ~ )  d x +  (2uy, -27714, + 2 v 2 u  + 8 u 2 +  v 2 + 4 u )  

and the basis X i ,  X ? ,  X, of sl(2) satisfies 

[XI 7 x21= x3 EX,, X,l= -xi 

e = ( - 1 + a77 ‘)XI - qx2 + ( 1 + 47 ‘1 X, 

f =  -XI - x, 

[XI ,  X7l = x2. 
Comparing ( 1 )  and (4) we find 

h = -7X, + 2x2  - 7x3 

and 

77’ = 4A. 

Wahlquist and Estabrook gave a realisation of ( 1 )  applying the non-linear representa- 
tion of sl(2) in the form 

f =  1 h = 2 y  ( 7 )  e = - y 2  

with the usual bracket for functions of the variable y.  In this case the condition w = 0 
is equivalent to 

dy + ( 2 ~  + y 2  - A ) d x  -4[ ( U + A ) ( ~ u  +y2  - A )  +;U,, - U,V] d t  = 0. (8) 
Chern and Tenenblat use the non-linear representation 

XI = -sin X , = - C O S ~  X 3 = - l  ( 9 )  
functions of the variable 4. 

d 4 + [ ( 1 + 2 u )  - (1 -2u)  sin 4 - 7 cos 41 d x  - [ ( l  +sin 4)(2u,, -2r]u, +2772u+8u2) 

In this realisation w = O  is equivalent to 

+ ( I - s i n  4 ) ( v 2 + 4 u ) + c o s  4 ( - q 3 - 4 q u + 4 u , ) ] d t = 0 .  (10) 
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Using (8) Wahlquist and Estabrook obtained the self-Backlund transformation for the 
Kdv equation 

U = - U  - y ' + A  (11) 

where y has to satisfy (8) and U is a second solution of the Kdv equation (3). 

form 
Chern and Tenenblat, using (91, derived the same Backlund transformation in the 

- U = u +  - - U  - 

A simple calculation shows that the coordinate transformation 

1 -sin 4 -77 cos 4 
1 +sin 4 l + s i n  4 

transforms the non-linear representation ( 7 )  of s1(2),  used by Wahlquist and Estabrook, 
into the non-linear representation (9) and the prolongation (8) into the form (10). 
Another very simple calculation shows that the right-hand side of (11) equals the 
right-hand side of (12). So, apart from some very elegant geometric interpretation, 
the method of Chern and Tenenblat for obtaining the Backlund transformation for 
the Kdv equation differs from the method used by Wahlquist and Estabrook only by 
a coordinate transformation. 

The sI(2)  prolongation for the MKdv equation is given by (see [4]) 

w = F d x +  G d t  (14) 

with 

F = A h + u ( e - f )  
(15) 

G = -( p + 2 u 3  -4uA')(e - f )  - 2A(2A2+ u 2 ) h  -2u,A( e + f ) .  

In this case, the zero curvature condition dw - w A w = 0 is equivalent to the MKdv 
equation 

(16) 

With respect to this non-linear evolution equation Chern and Tenenblat consider the 
form 

(17) 

U, + U,,, +6u'u, = 0. 

w = w , x ,  + wzX2+ w 3 x ,  

w ,  = 277u, d t  

~ 2 ~ 7 7  d x - ( 2 7 7 ~ ~ + v ' ) d t  

~3 = 2 U d x  - ( 2  U , ,  + 4u3 + 2 77 ' U )  d t. 

Setting 

(19) e = - XI + X ,  f = - X , - X 3  h = 2 X z  77 = 2 A  

we have equality of (14) and (17). 
Applying again the non-linear representation (7) we obtain the prolongation 

w = dy + [2Ay - U ( Y *  + l ) ]  d x  + [ -4h ( 2 h 2 +  u 2 ) y  

( 2 0 )  + (U,, + 2 u 3  + 4h ' u ) ( y 2  + 1)  + 2Au, (y2  - 1 )] d t  = 0. 
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The non-linear representation (9) applied in [ 1 1  gives 

w = d 4  - (7) cos 4 + 2u) dx - [27)ux sin 4 - ( 2 7 ) ~ ’  + v 3 )  cos 4 
-2( U,, + 2u3 + T’U)] d t  = 0. (21) 

y =tan($$ - :T)  (22) 

In this case the coordinate transformation 

transforms the non-linear representation ( 7 )  of sl(2) into the representation (9) and 
the prolongation (20) into (21). The derivation of the Backlund transformation in [l] ,  
based on equation (21), proceeds essentially along the same lines as the derivation of 
the Backlund transformation given by Chen [6]. 

Finally we discuss the sine-Gordon equation 

U,, = sin U, 

Using the realisation ( 7 ) ,  the sI(2) prolongation for the sine-Gordon equation is given 
in [ 7 ] .  In our notation it is described by 

(23) w = dy + [;( 1 +y2)u, - (l /A)y] dx  - A[;( 1 - y’) sin U + y cos U ]  d t  = 0. 

By the same coordinate transformation (22) it transforms into 

w = d 4 + [ u , + ( l / A ) c o s  4 ] d x + h  C O S ( U - ~ ) ~ ~ = O  

which is the same as the form in [ l ]  if we put 7) = 1 / A .  
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